Regulation, integrase-dependent excision, and horizontal transfer of genomic islands in Legionella pneumophila.

نویسندگان

  • Monika Lautner
  • Eva Schunder
  • Vroni Herrmann
  • Klaus Heuner
چکیده

Legionella pneumophila is a Gram-negative freshwater agent which multiplies in specialized nutrient-rich vacuoles of amoebae. When replicating in human alveolar macrophages, Legionella can cause Legionnaires' disease. Recently, we identified a new type of conjugation/type IVA secretion system (T4ASS) in L. pneumophila Corby (named trb-tra). Analogous versions of trb-tra are localized on the genomic islands Trb-1 and Trb-2. Both can exist as an episomal circular form, and Trb-1 can be transferred horizontally to other Legionella strains by conjugation. In our current work, we discovered the importance of a site-specific integrase (Int-1, lpc2818) for the excision and conjugation process of Trb-1. Furthermore, we identified the genes lvrRABC (lpc2813 to lpc2816) to be involved in the regulation of Trb-1 excision. In addition, we demonstrated for the first time that a Legionella genomic island (LGI) of L. pneumophila Corby (LpcGI-2) encodes a functional type IV secretion system. The island can be transferred horizontally by conjugation and is integrated site specifically into the genome of the transconjugants. LpcGI-2 generates three different episomal forms. The predominant episomal form, form A, is generated integrase dependently (Lpc1833) and transferred by conjugation in a pilT-dependent manner. Therefore, the genomic islands Trb-1 and LpcGI-2 should be classified as integrative and conjugative elements (ICEs). Coculture studies of L. pneumophila wild-type and mutant strains revealed that the int-1 and lvrRABC genes (located on Trb-1) as well as lpc1833 and pilT (located on LpcGI-2) do not influence the in vivo fitness of L. pneumophila in Acanthamoeba castellanii.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Legionella spp. outdoors: colonization, communication and persistence.

Bacteria of the genus Legionella persist in a wide range of environmental habitats, including biofilms, protozoa and nematodes. Legionellaceae are 'accidental' human pathogens that upon inhalation cause a severe pneumonia termed 'Legionnaires' disease'. The interactions of L. pneumophila with eukaryotic hosts are governed by the Icm/Dot type IV secretion system (T4SS) and more than 150 'effecto...

متن کامل

Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence

Type IV secretion systems (T4SSs) are multisubunit cell-envelope-spanning structures, ancestrally related to bacterial conjugation machines, which transfer proteins and nucleoprotein complexes across membranes. T4SSs mediate horizontal gene transfer, thus contributing to genome plasticity and the evolution of pathogens through dissemination of antibiotic resistance and virulence genes. Moreover...

متن کامل

Multigenome analysis identifies a worldwide distributed epidemic Legionella pneumophila clone that emerged within a highly diverse species.

Genomics can provide the basis for understanding the evolution of emerging, lethal human pathogens such as Legionella pneumophila, the causative agent of Legionnaires' disease. This bacterium replicates within amoebae and persists in the environment as a free-living microbe. Among the many Legionella species described, L. pneumophila is associated with 90% of human disease and within the 15 ser...

متن کامل

GI-type T4SS-mediated horizontal transfer of the 89K pathogenicity island in epidemic Streptococcus suis serotype 2

Pathogenicity islands (PAIs), a distinct type of genomic island (GI), play important roles in the rapid adaptation and increased virulence of pathogens. 89K is a newly identified PAI in epidemic Streptococcus suis isolates that are related to the two recent large-scale outbreaks of human infection in China. However, its mechanism of evolution and contribution to the epidemic spread of S. suis 2...

متن کامل

A Distinct and Divergent Lineage of Genomic Island-Associated Type IV Secretion Systems in Legionella

Legionella encodes multiple classes of Type IV Secretion Systems (T4SSs), including the Dot/Icm protein secretion system that is essential for intracellular multiplication in amoebal and human hosts. Other T4SSs not essential for virulence are thought to facilitate the acquisition of niche-specific adaptation genes including the numerous effector genes that are a hallmark of this genus. Previou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 195 7  شماره 

صفحات  -

تاریخ انتشار 2013